Multicontact Vector Fields on Hessenberg Manifolds
Journal of Lie theory, Tome 15 (2005) no. 2, pp. 357-377.

Voir la notice de l'article provenant de la source Heldermann Verlag

In 1850, Liouville proved that any C4 conformal map between domains in R3 is necessarily the restriction of the action of one element of O(1, 4). Cowling, De Mari, Koranyi and Reimann recently proved a Liouville-type result: they defined a generalized contact structure on homogeneous spaces of the type G/P, where G is a semisimple Lie group and P a minimal parabolic subgroup, and they show that the group of "contact" mappings coincides with G. In this paper, we consider the problem of characterizing the "contact" mappings on a natural class of submanifolds of G/P, namely the Hessenberg manifolds.
Classification : 22E46, 53A30, 57S20
Mots-clés : Semisimple Lie group, contact map, conformal map, Hessenberg manifolds
@article{JLT_2005_15_2_JLT_2005_15_2_a0,
     author = {<font color="#0000A0" size="2"> A. Ottazzi },
     title = {Multicontact {Vector} {Fields} on {Hessenberg} {Manifolds}},
     journal = {Journal of Lie theory},
     pages = {357--377},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a0/}
}
TY  - JOUR
AU  - <font color="#0000A0" size="2"> A. Ottazzi 
TI  - Multicontact Vector Fields on Hessenberg Manifolds
JO  - Journal of Lie theory
PY  - 2005
SP  - 357
EP  - 377
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a0/
ID  - JLT_2005_15_2_JLT_2005_15_2_a0
ER  - 
%0 Journal Article
%A <font color="#0000A0" size="2"> A. Ottazzi 
%T Multicontact Vector Fields on Hessenberg Manifolds
%J Journal of Lie theory
%D 2005
%P 357-377
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a0/
%F JLT_2005_15_2_JLT_2005_15_2_a0
 A. Ottazzi . Multicontact Vector Fields on Hessenberg Manifolds. Journal of Lie theory, Tome 15 (2005) no. 2, pp. 357-377. http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a0/