The Only Global Contact Transformations of Order Two or More are Point Transformations
Journal of Lie theory, Tome 15 (2005) no. 1, pp. 135-143
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider the space JmkM of k-jets of m-dimensional submanifolds of a smooth manifold M. Our purpose is to show that every contact transformation of JmkM, k ≥ 2, is induced by a diffeomorphism of M (point transformations). It is also derived that a first order contact transformation can not be globally prolonged to higher order jets except when it is a point transformation. This holds true as well for jets of sections of a regular projection. The Legendre transformation gives us an example of this property.
Classification :
58A20, 58A30
Mots-clés : Jet, contact system, contact transformation
Mots-clés : Jet, contact system, contact transformation
@article{JLT_2005_15_1_JLT_2005_15_1_a9,
author = {R. J. Alonso-Blanco and D. Bl�zquez-Sanz },
title = {The {Only} {Global} {Contact} {Transformations} of {Order} {Two} or {More} are {Point} {Transformations}},
journal = {Journal of Lie theory},
pages = {135--143},
year = {2005},
volume = {15},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a9/}
}
TY - JOUR AU - R. J. Alonso-Blanco AU - D. Bl�zquez-Sanz TI - The Only Global Contact Transformations of Order Two or More are Point Transformations JO - Journal of Lie theory PY - 2005 SP - 135 EP - 143 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a9/ ID - JLT_2005_15_1_JLT_2005_15_1_a9 ER -
%0 Journal Article %A R. J. Alonso-Blanco %A D. Bl�zquez-Sanz %T The Only Global Contact Transformations of Order Two or More are Point Transformations %J Journal of Lie theory %D 2005 %P 135-143 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a9/ %F JLT_2005_15_1_JLT_2005_15_1_a9
R. J. Alonso-Blanco; D. Bl�zquez-Sanz . The Only Global Contact Transformations of Order Two or More are Point Transformations. Journal of Lie theory, Tome 15 (2005) no. 1, pp. 135-143. http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a9/