Paires Sym�triques Orthogonales et Isomorphisme de Rouvi�re
Journal of Lie theory, Tome 15 (2005) no. 1, pp. 79-87.

Voir la notice de l'article provenant de la source Heldermann Verlag

In a recent work A. Alekseev and E. Meinrenken [arXiv: math. RT/0308135] proved that for quadratic symmetric pairs with anti-invariant bilineaire form, Rouvi�re's formula is still valid by using a deformation of the Weyl algebra. We recover this result by using the orbit method in Lie theory and our generalized Harish-Chandra homomorphism [J. Functional Anal. 117 (1993) 118--173 and 173--214, Bull. Soc. Math. France 126 (1998) 295--354].
@article{JLT_2005_15_1_JLT_2005_15_1_a5,
     author = {C. Torossian },
     title = {Paires {Sym�triques} {Orthogonales} et {Isomorphisme} de {Rouvi�re}},
     journal = {Journal of Lie theory},
     pages = {79--87},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a5/}
}
TY  - JOUR
AU  - C. Torossian 
TI  - Paires Sym�triques Orthogonales et Isomorphisme de Rouvi�re
JO  - Journal of Lie theory
PY  - 2005
SP  - 79
EP  - 87
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a5/
ID  - JLT_2005_15_1_JLT_2005_15_1_a5
ER  - 
%0 Journal Article
%A C. Torossian 
%T Paires Sym�triques Orthogonales et Isomorphisme de Rouvi�re
%J Journal of Lie theory
%D 2005
%P 79-87
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a5/
%F JLT_2005_15_1_JLT_2005_15_1_a5
C. Torossian . Paires Sym�triques Orthogonales et Isomorphisme de Rouvi�re. Journal of Lie theory, Tome 15 (2005) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a5/