Discrete Series Representations of Unipotent p-adic Groups
Journal of Lie theory, Tome 15 (2005) no. 1, pp. 261-267.

Voir la notice de l'article provenant de la source Heldermann Verlag

For a certain class of locally profinite groups, we show that an irreducible smooth discrete series representation is necessarily supercuspidal and, more strongly, can be obtained by induction from a linear character of a suitable open and compact modulo center subgroup. If F is a non-Archimedean local field, then our class of groups includes the groups of F-points of unipotent algebraic groups defined over F. We therefore recover earlier results of van Dijk and Corwin.
Classification : 22E50, 20G05, 22E27
Mots-clés : p-adic group, locally profinite group, nilpotent group, discrete series, supercuspidal representation
@article{JLT_2005_15_1_JLT_2005_15_1_a17,
     author = {J. D. Adler and A. Roche },
     title = {Discrete {Series} {Representations} of {Unipotent} p-adic {Groups}},
     journal = {Journal of Lie theory},
     pages = {261--267},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a17/}
}
TY  - JOUR
AU  - J. D. Adler
AU  - A. Roche 
TI  - Discrete Series Representations of Unipotent p-adic Groups
JO  - Journal of Lie theory
PY  - 2005
SP  - 261
EP  - 267
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a17/
ID  - JLT_2005_15_1_JLT_2005_15_1_a17
ER  - 
%0 Journal Article
%A J. D. Adler
%A A. Roche 
%T Discrete Series Representations of Unipotent p-adic Groups
%J Journal of Lie theory
%D 2005
%P 261-267
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a17/
%F JLT_2005_15_1_JLT_2005_15_1_a17
J. D. Adler; A. Roche . Discrete Series Representations of Unipotent p-adic Groups. Journal of Lie theory, Tome 15 (2005) no. 1, pp. 261-267. http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a17/