On the Riemann-Lie Algebras and Riemann-Poisson Lie Groups
Journal of Lie theory, Tome 15 (2005) no. 1, pp. 183-195.

Voir la notice de l'article provenant de la source Heldermann Verlag

A Riemann-Lie algebra is a Lie algebra G such that its dual G* carries a Riemannian metric compatible (in the sense introduced recently by the author [C. R. Acad. Sci. Paris, S�rie I, 333 (2001) 763--768] with the canonical linear Poisson structure of G*. The notion of Riemann-Lie algebra has its origins in the study, by the author, of Riemann-Poisson manifolds [see Diff. Geometry Appl. 20 (2004) 279--291].
@article{JLT_2005_15_1_JLT_2005_15_1_a11,
     author = {M. Boucetta },
     title = {On the {Riemann-Lie} {Algebras} and {Riemann-Poisson} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a11/}
}
TY  - JOUR
AU  - M. Boucetta 
TI  - On the Riemann-Lie Algebras and Riemann-Poisson Lie Groups
JO  - Journal of Lie theory
PY  - 2005
SP  - 183
EP  - 195
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a11/
ID  - JLT_2005_15_1_JLT_2005_15_1_a11
ER  - 
%0 Journal Article
%A M. Boucetta 
%T On the Riemann-Lie Algebras and Riemann-Poisson Lie Groups
%J Journal of Lie theory
%D 2005
%P 183-195
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a11/
%F JLT_2005_15_1_JLT_2005_15_1_a11
M. Boucetta . On the Riemann-Lie Algebras and Riemann-Poisson Lie Groups. Journal of Lie theory, Tome 15 (2005) no. 1, pp. 183-195. http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a11/