Moore-Penrose Inverse, Parabolic Subgroups, and Jordan Pairs
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 461-481.

Voir la notice de l'article provenant de la source Heldermann Verlag

A Moore-Penrose inverse of an arbitrary complex matrix A is defined as a unique matrix A+ such that AA+A = A, A+AA+ = A+, and AA+, A+A are Hermite matrices. We show that this definition has a natural generalization in the context of shortly graded simple Lie algebras corresponding to parabolic subgroups with "aura" (abelian unipotent radical) in simple complex Lie groups, or equivalently in the context of simple complex Jordan pairs. We give further generalizations and applications.
@article{JLT_2002_12_2_JLT_2002_12_2_a8,
     author = {E. Tevelev },
     title = {Moore-Penrose {Inverse,} {Parabolic} {Subgroups,} and {Jordan} {Pairs}},
     journal = {Journal of Lie theory},
     pages = {461--481},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a8/}
}
TY  - JOUR
AU  - E. Tevelev 
TI  - Moore-Penrose Inverse, Parabolic Subgroups, and Jordan Pairs
JO  - Journal of Lie theory
PY  - 2002
SP  - 461
EP  - 481
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a8/
ID  - JLT_2002_12_2_JLT_2002_12_2_a8
ER  - 
%0 Journal Article
%A E. Tevelev 
%T Moore-Penrose Inverse, Parabolic Subgroups, and Jordan Pairs
%J Journal of Lie theory
%D 2002
%P 461-481
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a8/
%F JLT_2002_12_2_JLT_2002_12_2_a8
E. Tevelev . Moore-Penrose Inverse, Parabolic Subgroups, and Jordan Pairs. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 461-481. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a8/