Moore-Penrose Inverse, Parabolic Subgroups, and Jordan Pairs
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 461-481
Voir la notice de l'article provenant de la source Heldermann Verlag
A Moore-Penrose inverse of an arbitrary complex matrix A is defined as a unique matrix A+ such that AA+A = A, A+AA+ = A+, and AA+, A+A are Hermite matrices. We show that this definition has a natural generalization in the context of shortly graded simple Lie algebras corresponding to parabolic subgroups with "aura" (abelian unipotent radical) in simple complex Lie groups, or equivalently in the context of simple complex Jordan pairs. We give further generalizations and applications.
@article{JLT_2002_12_2_JLT_2002_12_2_a8,
author = {E. Tevelev },
title = {Moore-Penrose {Inverse,} {Parabolic} {Subgroups,} and {Jordan} {Pairs}},
journal = {Journal of Lie theory},
pages = {461--481},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2002},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a8/}
}
E. Tevelev . Moore-Penrose Inverse, Parabolic Subgroups, and Jordan Pairs. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 461-481. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a8/