Complete Filtered Lie Algebras over a Vector Space of Dimension Two
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 423-447.

Voir la notice de l'article provenant de la source Heldermann Verlag

There may exist many non-isomorphic complete filtered Lie algebras with the same graded algebra. In our previous paper "Complete filtered Lie algebras and the Spencer cohomology", J. Algebra 125 (1989) 66--109, we found elements in the Spencer cohomology that determined all complete filtered Lie algebras having certain graded algebra provided that obstructions do not exist in the cohomology at higher levels. In this paper we use the Spencer cohomology to classify all graded and filtered algebras over a real vector space of dimension two.
@article{JLT_2002_12_2_JLT_2002_12_2_a6,
     author = {T. W. Judson },
     title = {Complete {Filtered} {Lie} {Algebras} over a {Vector} {Space} of {Dimension} {Two}},
     journal = {Journal of Lie theory},
     pages = {423--447},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a6/}
}
TY  - JOUR
AU  - T. W. Judson 
TI  - Complete Filtered Lie Algebras over a Vector Space of Dimension Two
JO  - Journal of Lie theory
PY  - 2002
SP  - 423
EP  - 447
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a6/
ID  - JLT_2002_12_2_JLT_2002_12_2_a6
ER  - 
%0 Journal Article
%A T. W. Judson 
%T Complete Filtered Lie Algebras over a Vector Space of Dimension Two
%J Journal of Lie theory
%D 2002
%P 423-447
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a6/
%F JLT_2002_12_2_JLT_2002_12_2_a6
T. W. Judson . Complete Filtered Lie Algebras over a Vector Space of Dimension Two. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 423-447. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a6/