Polynomial Identities in Smash Products
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 369-395.

Voir la notice de l'article provenant de la source Heldermann Verlag

Suppose that a group G acts by aumorphisms on a (restricted) Lie algebra L over a field K of positive characteristic. This gives rise to smash products U(L) # K[G] and u(L)# K[G]. We find necessary and sufficient conditions for these smash products to satisfy a nontrivial polynomial identity.
@article{JLT_2002_12_2_JLT_2002_12_2_a3,
     author = {Y. Bahturin and V. M. Petrogradsky },
     title = {Polynomial {Identities} in {Smash} {Products}},
     journal = {Journal of Lie theory},
     pages = {369--395},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a3/}
}
TY  - JOUR
AU  - Y. Bahturin
AU  - V. M. Petrogradsky 
TI  - Polynomial Identities in Smash Products
JO  - Journal of Lie theory
PY  - 2002
SP  - 369
EP  - 395
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a3/
ID  - JLT_2002_12_2_JLT_2002_12_2_a3
ER  - 
%0 Journal Article
%A Y. Bahturin
%A V. M. Petrogradsky 
%T Polynomial Identities in Smash Products
%J Journal of Lie theory
%D 2002
%P 369-395
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a3/
%F JLT_2002_12_2_JLT_2002_12_2_a3
Y. Bahturin; V. M. Petrogradsky . Polynomial Identities in Smash Products. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 369-395. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a3/