On the Structure of Graded Transitive Lie Algebras
Journal of Lie theory, Tome 12 (2002) no. 1, pp. 265-288
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\L{{\mathfrak L}} \def\g{{\mathfrak g}} \def\gs{\bar{\g}} We study finite-dimensional Lie algebras $\L$ of polynomial vector fields in $n$ variables that contain the vector fields $\dfrac{\partial}{\partial x_i} \; (i=1,\ldots, n)$ and $x_1\dfrac{\partial}{\partial x_1}+ \dots + x_n\dfrac{\partial}{\partial x_n}$. We show that the maximal ones always contain a semi-simple subalgebra $\gs$, such that $\dfrac{\partial}{\partial x_i}\in \gs \; (i=1,\ldots, m)$ for an $m$ with $1 \leq m \leq n$. Moreover a maximal algebra has no trivial $\gs$-modules in the space spanned by $\dfrac{\partial}{\partial x_i} (i=m+1,\ldots, n)$. The possible algebras $\gs$ are described in detail, as well as all $\gs$-modules that constitute such maximal $\L$. The maximal algebras are described explicitly for $n\leq 3$.
Classification :
17B66, 17B70, 17B05
Mots-clés : Lie algebras, vector fields, graded Lie algebras
Mots-clés : Lie algebras, vector fields, graded Lie algebras
@article{JLT_2002_12_1_JLT_2002_12_1_a13,
author = {G. Post },
title = {On the {Structure} of {Graded} {Transitive} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {265--288},
year = {2002},
volume = {12},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a13/}
}
G. Post . On the Structure of Graded Transitive Lie Algebras. Journal of Lie theory, Tome 12 (2002) no. 1, pp. 265-288. http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a13/