Supercongruences involving multiple harmonic sums and Bernoulli numbers
Journal of integer sequences, Tome 20 (2017) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study some supercongruences involving multiple harmonic sums by using Bernoulli numbers. Our main theorem generalizes previous results by many different authors and confirms a conjecture by the authors and their collaborators. In the proof, we will need not only the ordinary multiple harmonic sums in which the indices are ordered, but also some variant forms in which the indices can be unordered or partially ordered. It is a crucial fact that the unordered multiple harmonic sums often behave better than the corresponding ordered sums when one considers congruences. We believe these unordered sums will play important roles in other studies in the future.
Classification : 11A07, 11B68
Keywords: multiple harmonic sum, finite multiple zeta value, Bernoulli number, supercongruence
@article{JIS_2017__20_6_a4,
     author = {Chen, Kevin and Zhao, Jianqiang},
     title = {Supercongruences involving multiple harmonic sums and {Bernoulli} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a4/}
}
TY  - JOUR
AU  - Chen, Kevin
AU  - Zhao, Jianqiang
TI  - Supercongruences involving multiple harmonic sums and Bernoulli numbers
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a4/
LA  - en
ID  - JIS_2017__20_6_a4
ER  - 
%0 Journal Article
%A Chen, Kevin
%A Zhao, Jianqiang
%T Supercongruences involving multiple harmonic sums and Bernoulli numbers
%J Journal of integer sequences
%D 2017
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a4/
%G en
%F JIS_2017__20_6_a4
Chen, Kevin; Zhao, Jianqiang. Supercongruences involving multiple harmonic sums and Bernoulli numbers. Journal of integer sequences, Tome 20 (2017) no. 6. http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a4/