Arithmetic progressions on $y^2 = x^3 + k$
Journal of integer sequences, Tome 19 (2016) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Many authors have studied the problem of finding sequences of rational points on elliptic curves such that either the abscissae or the ordinates of these points are in arithmetic progression. In this paper we obtain upper bounds for the lengths of sequences of rational points on curves of the type $y^{2} = x^{3} + k, k \in $ Q 0, such that the ordinates of the points are in arithmetic progression, and also when both the abscissae and the ordinates of the points are separately the terms of two arithmetic progressions.
Keywords: arithmetic progression, elliptic curve
@article{JIS_2016__19_7_a0,
     author = {Dey, Pallab Kanti and Maji, Bibekananda},
     title = {Arithmetic progressions on $y^2 = x^3 + k$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a0/}
}
TY  - JOUR
AU  - Dey, Pallab Kanti
AU  - Maji, Bibekananda
TI  - Arithmetic progressions on $y^2 = x^3 + k$
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a0/
LA  - en
ID  - JIS_2016__19_7_a0
ER  - 
%0 Journal Article
%A Dey, Pallab Kanti
%A Maji, Bibekananda
%T Arithmetic progressions on $y^2 = x^3 + k$
%J Journal of integer sequences
%D 2016
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a0/
%G en
%F JIS_2016__19_7_a0
Dey, Pallab Kanti; Maji, Bibekananda. Arithmetic progressions on $y^2 = x^3 + k$. Journal of integer sequences, Tome 19 (2016) no. 7. http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a0/