Rational points in arithmetic progression on the unit circle
Journal of integer sequences, Tome 19 (2016) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Several authors have considered the problem of finding rational points $(x_{i}, y_{i}), i = 1, 2,\dots , n$ on various curves $f(x, y) = 0$, including conics, elliptic curves and hyperelliptic curves, such that the $x$-coordinates $x_{i}, i = 1, 2,\dots , n$ are in arithmetic progression. In this paper we find infinitely many sets of three points, in parametric terms, on the unit circle $x^{2} + y^{2} = 1$ such that the $x$-coordinates of the three points are in arithmetic progression. It is an open problem whether there exist four rational points on the unit circle such that their $x$-coordinates are in arithmetic progression.
Classification : 11D09
Keywords: arithmetic progression, unit circle
@article{JIS_2016__19_4_a6,
     author = {Choudhry, Ajai and Juyal, Abhishek},
     title = {Rational points in arithmetic progression on the unit circle},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a6/}
}
TY  - JOUR
AU  - Choudhry, Ajai
AU  - Juyal, Abhishek
TI  - Rational points in arithmetic progression on the unit circle
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a6/
LA  - en
ID  - JIS_2016__19_4_a6
ER  - 
%0 Journal Article
%A Choudhry, Ajai
%A Juyal, Abhishek
%T Rational points in arithmetic progression on the unit circle
%J Journal of integer sequences
%D 2016
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a6/
%G en
%F JIS_2016__19_4_a6
Choudhry, Ajai; Juyal, Abhishek. Rational points in arithmetic progression on the unit circle. Journal of integer sequences, Tome 19 (2016) no. 4. http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a6/