Young graphs: 1089 et al.
Journal of integer sequences, Tome 18 (2015) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper deals with those positive integers $N$ such that, for given integers $g$ and $k$ with $2 \le k g$, the base-$g$ digits of $kN$ appear in reverse order from those of $N$. Such $N$ are called $(g, k)$ reverse multiples. Young, in 1992, developed a kind of tree reflecting properties of these numbers; Sloane, in 2013, modified these trees into directed graphs and introduced certain combinatorial methods to determine from these graphs the number of reverse multiples for given values of $g$ and $k$ with a given number of digits. We prove Sloanes isomorphism conjectures for 1089 graphs and complete graphs, namely that the Young graph for $g$ and $k$ is a 1089 graph if and only if $k+1 | g$ and is a complete Young graph on $m$ nodes if and only if $\lfloor $gcd(g - $k, k^{2} - 1)/(k + 1) \rfloor = m - 1$. We also extend his study of cyclic Young graphs and prove a minor result on isomorphism and the nodes adjacent to the node [0, 0].
Classification : 11A63, 05C20
Keywords: Young graph, reverse multiple, palintiple, radix representation
@article{JIS_2015__18_9_a2,
     author = {Kendrick, L.H.},
     title = {Young graphs: 1089 et al.},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a2/}
}
TY  - JOUR
AU  - Kendrick, L.H.
TI  - Young graphs: 1089 et al.
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a2/
LA  - en
ID  - JIS_2015__18_9_a2
ER  - 
%0 Journal Article
%A Kendrick, L.H.
%T Young graphs: 1089 et al.
%J Journal of integer sequences
%D 2015
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a2/
%G en
%F JIS_2015__18_9_a2
Kendrick, L.H. Young graphs: 1089 et al.. Journal of integer sequences, Tome 18 (2015) no. 9. http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a2/