Integer solutions of the equation $y^2 = Ax^4 + B$
Journal of integer sequences, Tome 18 (2015) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $A \in {k^{2}(k^{2}l^{2} + 1), 4k^{2}(k^{2}(2l - 1)^{2} + 1)}$, where $k$ and $l$ are positive integers, and let $B$ be a non-zero square-free integer such that $|B| \sqrt A$. In this paper we determine all the possible integer solutions of the equation $y^{2} = Ax^{4} + B$ by using terms of Lucas sequences of the form $mx^{2}$.
Classification : 11D25, 11D41, 11A55, 11B39
Keywords: Lucas sequence, continued fraction, Diophantine equation, quartic elliptic curve
@article{JIS_2015__18_4_a4,
     author = {Alvanos, Paraskevas K. and Draziotis, Konstantinos A.},
     title = {Integer solutions of the equation $y^2 = Ax^4 + B$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a4/}
}
TY  - JOUR
AU  - Alvanos, Paraskevas K.
AU  - Draziotis, Konstantinos A.
TI  - Integer solutions of the equation $y^2 = Ax^4 + B$
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a4/
LA  - en
ID  - JIS_2015__18_4_a4
ER  - 
%0 Journal Article
%A Alvanos, Paraskevas K.
%A Draziotis, Konstantinos A.
%T Integer solutions of the equation $y^2 = Ax^4 + B$
%J Journal of integer sequences
%D 2015
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a4/
%G en
%F JIS_2015__18_4_a4
Alvanos, Paraskevas K.; Draziotis, Konstantinos A. Integer solutions of the equation $y^2 = Ax^4 + B$. Journal of integer sequences, Tome 18 (2015) no. 4. http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a4/