Free Fibonacci sequences
Journal of integer sequences, Tome 17 (2014) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper describes a class of sequences that are in many ways similar to Fibonacci sequences: given $n$, sum the previous two terms and divide them by the largest possible power of $n$. The behavior of such sequences depends on $n$. We analyze these sequences for small $n$: 2, 3, 4, and 5. Surprisingly, these behaviors are very different. We also present theorems regarding any $n$. Many statements about these sequences may be difficult or even impossible to prove, but they can be supported by probabilistic arguments. We have plenty of those in this paper.
Classification : 11B39, 11B50
Keywords: Fibonacci number, Lucas number, divisibility, entry point
@article{JIS_2014__17_8_a5,
     author = {Avila, Brandon and Khovanova, Tanya},
     title = {Free {Fibonacci} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a5/}
}
TY  - JOUR
AU  - Avila, Brandon
AU  - Khovanova, Tanya
TI  - Free Fibonacci sequences
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a5/
LA  - en
ID  - JIS_2014__17_8_a5
ER  - 
%0 Journal Article
%A Avila, Brandon
%A Khovanova, Tanya
%T Free Fibonacci sequences
%J Journal of integer sequences
%D 2014
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a5/
%G en
%F JIS_2014__17_8_a5
Avila, Brandon; Khovanova, Tanya. Free Fibonacci sequences. Journal of integer sequences, Tome 17 (2014) no. 8. http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a5/