Wythoff Nim extensions and splitting sequences
Journal of integer sequences, Tome 17 (2014) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study extensions of the classical impartial combinatorial game of Wythoff Nim. The games are played on two heaps of tokens, and have $symmetric$ move options, so that, for any integers $0 \le x \le y$, the outcome of the $upper$ position $(x, y)$ is identical to that of $(y, x)$. First we prove that $\phi ^{-1} = 2/(1+\sqrt 5)$ is a lower bound for the lower asymptotic density of the $x$-coordinates of a given game's $upper$ P-positions. The second result concerns a subfamily, called a Generalized Diagonal Wythoff Nim, recently introduced by Larsson. A certain $split$ of P-positions, distributed in a number of so-called P-beams, was conjectured for many such games. The term $split$ here means that an infinite sector of upper positions is void of P-positions, but with infinitely many upper P-positions above and below it. By using the first result, we prove this conjecture for one of these games, called (1,2)-GDWN, where a player moves as in Wythoff Nim, or instead chooses to remove a positive number of tokens from one heap and twice that number from the other.
Keywords: combinatorial game, complementary sequence, golden ratio, impartial game, integer sequence, lower asymptotic density, splitting sequence, Wythoff nim
@article{JIS_2014__17_5_a1,
     author = {Larsson, Urban},
     title = {Wythoff {Nim} extensions and splitting sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_5_a1/}
}
TY  - JOUR
AU  - Larsson, Urban
TI  - Wythoff Nim extensions and splitting sequences
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_5_a1/
LA  - en
ID  - JIS_2014__17_5_a1
ER  - 
%0 Journal Article
%A Larsson, Urban
%T Wythoff Nim extensions and splitting sequences
%J Journal of integer sequences
%D 2014
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_5_a1/
%G en
%F JIS_2014__17_5_a1
Larsson, Urban. Wythoff Nim extensions and splitting sequences. Journal of integer sequences, Tome 17 (2014) no. 5. http://geodesic.mathdoc.fr/item/JIS_2014__17_5_a1/