The number of relatively prime subsets of a finite union of sets of consecutive integers
Journal of integer sequences, Tome 17 (2014) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $A$ be a finite union of disjoint sets of consecutive integers and let $n$ be a positive integer. We give a formula for the number of relatively prime subsets (resp., relatively prime subsets of cardinality $k$) of $A$, which generalizes results of Nathanson, El Bachraoui and others. We give as well similar formulas for the number of subsets with gcd coprime to $n$.
Keywords: phi function, relatively prime set, combinatorial identity
@article{JIS_2014__17_3_a4,
     author = {Ayad, Mohamed and Coia, Vincenzo and Kihel, Omar},
     title = {The number of relatively prime subsets of a finite union of sets of consecutive integers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a4/}
}
TY  - JOUR
AU  - Ayad, Mohamed
AU  - Coia, Vincenzo
AU  - Kihel, Omar
TI  - The number of relatively prime subsets of a finite union of sets of consecutive integers
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a4/
LA  - en
ID  - JIS_2014__17_3_a4
ER  - 
%0 Journal Article
%A Ayad, Mohamed
%A Coia, Vincenzo
%A Kihel, Omar
%T The number of relatively prime subsets of a finite union of sets of consecutive integers
%J Journal of integer sequences
%D 2014
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a4/
%G en
%F JIS_2014__17_3_a4
Ayad, Mohamed; Coia, Vincenzo; Kihel, Omar. The number of relatively prime subsets of a finite union of sets of consecutive integers. Journal of integer sequences, Tome 17 (2014) no. 3. http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a4/