The inverse football pool problem
Journal of integer sequences, Tome 14 (2011) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The minimal number of spheres (without "interior") of radius $n$ required to cover the finite set ${0, \dots , q-1}^{n}$ equipped with the Hamming distance is denoted by $T(n,q)$. The only hitherto known values of $T(n,q)$ are $T(n,3)$ for $n = 1, \dots $, 6. These were all given in the 1950's in the Finnish football pool magazine $Veikkaaja$ along with upper and lower bounds for $T(n,3)$ for $n \ge 7$. Recently, Östergård and Riihonen found improved upper bounds for $T(n,3)$ for $n = 9,10,11$,13 using tabu search. In the present paper, a new method to determine $T(n,q)$ is presented. This method is used to find the next two values of $T(n,3)$ as well as six non-trivial values of $T(n,q)$ with $q > 3$. It is also shown that, modulo equivalence, there is only one minimal covering of ${0,1,2}^{n}$ for each $n \le 7$, thereby proving a conjecture of Östergård and Riihonen. For reasons discussed in the paper, it is proposed to denote the problem of determining the values of $T(n,3)$ as the inverse football pool problem.
Classification : 05B40, 11H31, 52C17
Keywords: minimal covering codes, football pool problem
@article{JIS_2011__14_8_a1,
     author = {Brink, David},
     title = {The inverse football pool problem},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_8_a1/}
}
TY  - JOUR
AU  - Brink, David
TI  - The inverse football pool problem
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_8_a1/
LA  - en
ID  - JIS_2011__14_8_a1
ER  - 
%0 Journal Article
%A Brink, David
%T The inverse football pool problem
%J Journal of integer sequences
%D 2011
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_8_a1/
%G en
%F JIS_2011__14_8_a1
Brink, David. The inverse football pool problem. Journal of integer sequences, Tome 14 (2011) no. 8. http://geodesic.mathdoc.fr/item/JIS_2011__14_8_a1/