An inequality for Macaulay functions
Journal of integer sequences, Tome 14 (2011) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given integers $ k\geq1$ and $ n\geq0$, there is a unique way of writing $ n$ as $ n=\binom{n_{k}}{k}+\binom{n_{k-1}}{k-1}+\cdots+\binom{n_{1}}{1}$ so that $ 0\leq n_{1}\cdots$. Using this representation, the k $ ^{{th}}$ Macaulay function of $ n$ is defined as $ \partial^{k}( n) =\binom{n_{k}-1}{k-1}+\binom{n_{k-1}-1}{k-2}+\cdots+\binom{n_{1}-1} {0}.$ We show that if $ a\geq0$ and $ a\partial^{k+1}(n) $, then $ \partial^{k}(a) +\partial^{k+1}( n-a) \geq \partial^{k+1}(n)$. As a corollary, we obtain a short proof of Macaulay's theorem. Other previously known results are obtained as direct consequences.
Classification : 05A05, 05A20
Keywords: Macaulay function, Macaulay's theorem, binomial representation of a positive integer, shadow of a set
@article{JIS_2011__14_7_a3,
     author = {\'Abrego, Bernardo M. and Fern\'andez-Merchant, Silvia and Llano, Bernardo},
     title = {An inequality for {Macaulay} functions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_7_a3/}
}
TY  - JOUR
AU  - Ábrego, Bernardo M.
AU  - Fernández-Merchant, Silvia
AU  - Llano, Bernardo
TI  - An inequality for Macaulay functions
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_7_a3/
LA  - en
ID  - JIS_2011__14_7_a3
ER  - 
%0 Journal Article
%A Ábrego, Bernardo M.
%A Fernández-Merchant, Silvia
%A Llano, Bernardo
%T An inequality for Macaulay functions
%J Journal of integer sequences
%D 2011
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_7_a3/
%G en
%F JIS_2011__14_7_a3
Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Llano, Bernardo. An inequality for Macaulay functions. Journal of integer sequences, Tome 14 (2011) no. 7. http://geodesic.mathdoc.fr/item/JIS_2011__14_7_a3/