Full subsets of $N$
Journal of integer sequences, Tome 14 (2011) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $ A$ be a subset of $ \mathbb{N}$. We say that $ A$ is $ m$-full if $ \sum A=[m]$ for a positive integer $ m$, where $ \sum A$ is the set of all positive integers which are a sum of distinct elements of $ A$ and $ [m]=\{1,\ldots,m\}$. In this paper, we show that a set $ A=\{a_1,\ldots,a_k\}$ with $ a_1\cdots$ is full if and only if $ a_1=1$ and $ a_i\leq a_1+\cdots+a_{i-1}+1$ for each $ i, 2\leq i\leq k$. We also prove that for each positive integer $ m\notin\{2,4,5,8,9\}$ there is an $ m$-full set. We determine the numbers $ \alpha(m)=\min\{\vert A\vert: \sum A=[m]\}, \beta(m)=\max\{\vert A\vert: \sum A=[m]\}, L(m)=\min\{\max A: \sum A=[m]\}$ and $ U(m)=\max\{\max A: \sum A=[m]\}$ in terms of $ m$. We also give a formula for $ F(m)$, the number of $ m$-full sets.
Classification : 05A17, 11P81
Keywords: perfect number, m-full set, partition of a positive integer
@article{JIS_2011__14_5_a3,
     author = {Naranjani, Lila and Mirzavaziri, Madjid},
     title = {Full subsets of $N$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a3/}
}
TY  - JOUR
AU  - Naranjani, Lila
AU  - Mirzavaziri, Madjid
TI  - Full subsets of $N$
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a3/
LA  - en
ID  - JIS_2011__14_5_a3
ER  - 
%0 Journal Article
%A Naranjani, Lila
%A Mirzavaziri, Madjid
%T Full subsets of $N$
%J Journal of integer sequences
%D 2011
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a3/
%G en
%F JIS_2011__14_5_a3
Naranjani, Lila; Mirzavaziri, Madjid. Full subsets of $N$. Journal of integer sequences, Tome 14 (2011) no. 5. http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a3/