On the solutions of $\sigma (n) = \sigma (n + k)$
Journal of integer sequences, Tome 14 (2011) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a fixed even integer $k$, we show that Schinzel's hypothesis H implies that $\sigma (n) = \sigma (n + k)$ infinitely often. We also discuss the case of odd $k$ and the more general equation $\sigma _{\alpha }(n) = \sigma _{\alpha }(n + k)$.
Classification : 11A25
Keywords: sum-of-divisors function, schinzel's hypothesis H
@article{JIS_2011__14_5_a0,
     author = {Weingartner, Andreas},
     title = {On the solutions of $\sigma (n) = \sigma (n + k)$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a0/}
}
TY  - JOUR
AU  - Weingartner, Andreas
TI  - On the solutions of $\sigma (n) = \sigma (n + k)$
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a0/
LA  - en
ID  - JIS_2011__14_5_a0
ER  - 
%0 Journal Article
%A Weingartner, Andreas
%T On the solutions of $\sigma (n) = \sigma (n + k)$
%J Journal of integer sequences
%D 2011
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a0/
%G en
%F JIS_2011__14_5_a0
Weingartner, Andreas. On the solutions of $\sigma (n) = \sigma (n + k)$. Journal of integer sequences, Tome 14 (2011) no. 5. http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a0/