Generating functions for Wilf equivalence under generalized factor order
Journal of integer sequences, Tome 14 (2011) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Kitaev, Liese, Remmel, and Sagan recently defined generalized factor order on words comprised of letters from a partially ordered set $ (P, \leq_P)$ by setting $ u \leq_P w$ if there is a contiguous subword $ v$ of $ w$ of the same length as $ u$ such that the $ i$-th character of $ v$ is greater than or equal to the $ i$-th character of $ u$ for all $ i$. This subword $ v$ is called an embedding of $ u$ into $ w$. For the case where $ P$ is the positive integers with the usual ordering, they defined the weight of a word $ w = w_1\ldots w_n$ to be wt$ (w) = t^{n} x^{\sum_{i=1}^n w_i}$, and the corresponding weight generating function $ F(u;t,x) = \sum_{w \geq_P u}$ wt$ (w)$. They then defined two words $ u$ and $ v$ to be Wilf equivalent, denoted $ u \backsim v$, if and only if $ F(u;t,x) = F(v;t,x)$. They also defined the related generating function $ S(u;t,x) = \sum_{w \in \mathcal{S}(u)}$ wt$ (w)$ where $ \mathcal{S}(u)$ is the set of all words $ w$ such that the only embedding of $ u$ into $ w$ is a suffix of $ w$, and showed that $ u \backsim v$ if and only if $ S(u;t,x) = S(v;t,x)$. We continue this study by giving an explicit formula for $ S(u;t,x)$ if $ u$ factors into a weakly increasing word followed by a weakly decreasing word. We use this formula as an aid to classify Wilf equivalence for all words of length 3. We also show that coefficients of related generating functions are well-known sequences in several special cases. Finally, we discuss a conjecture that if $ u \backsim v$ then $ u$ and $ v$ must be rearrangements, and the stronger conjecture that there also must be a weight-preserving bijection $ f$ on words over the positive integers such that $ f(w)$ is a rearrangement of $ w$ for all $ w$, and $ w$ embeds $ u$ if and only if $ f(w)$ embeds $ v$.
Classification : 05A15, 68R15, 06A07
Keywords: composition, factor orders, generating function, partially ordered set, rationality, wilf equivalence (Concerned with sequences and )
@article{JIS_2011__14_4_a4,
     author = {Langley, Thomas and Liese, Jeffrey and Remmel, Jeffrey},
     title = {Generating functions for {Wilf} equivalence under generalized factor order},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_4_a4/}
}
TY  - JOUR
AU  - Langley, Thomas
AU  - Liese, Jeffrey
AU  - Remmel, Jeffrey
TI  - Generating functions for Wilf equivalence under generalized factor order
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_4_a4/
LA  - en
ID  - JIS_2011__14_4_a4
ER  - 
%0 Journal Article
%A Langley, Thomas
%A Liese, Jeffrey
%A Remmel, Jeffrey
%T Generating functions for Wilf equivalence under generalized factor order
%J Journal of integer sequences
%D 2011
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_4_a4/
%G en
%F JIS_2011__14_4_a4
Langley, Thomas; Liese, Jeffrey; Remmel, Jeffrey. Generating functions for Wilf equivalence under generalized factor order. Journal of integer sequences, Tome 14 (2011) no. 4. http://geodesic.mathdoc.fr/item/JIS_2011__14_4_a4/