Binomial coefficient predictors
Journal of integer sequences, Tome 14 (2011) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a prime $ p$ and nonnegative integers $ n,k,$ consider the set $ A_{n, k}^{(p)}=\{x\in [0,1,...,n]: p^k\vert\vert\binom {n} {x}\}.$ Let the expansion of $ n+1$ in base $ p$ be $ n+1=\alpha_{0} p^{\nu}+\alpha_{1}p^{\nu-1}+\cdots+\alpha_{\nu},$ where $ 0\leq \alpha_{i}\leq p-1, i=0, \ldots, \nu.$ Then $ n$ is called a binomial coefficient predictor in base $ p ( p$-BCP), if $ \vert A_{n, k}^{(p)}\vert=\alpha_{k}p^{\nu-k}, k=0,1, \ldots, \nu.$ We give a full description of the $ p$-BCP's in every base $ p.$
Classification : 11B65, 11A07, 11A15
Keywords: binomial coefficient, maximal exponent of a prime dividing an integer, p-ary expansion of integer, Kummer's theorem
@article{JIS_2011__14_2_a7,
     author = {Shevelev, Vladimir},
     title = {Binomial coefficient predictors},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a7/}
}
TY  - JOUR
AU  - Shevelev, Vladimir
TI  - Binomial coefficient predictors
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a7/
LA  - en
ID  - JIS_2011__14_2_a7
ER  - 
%0 Journal Article
%A Shevelev, Vladimir
%T Binomial coefficient predictors
%J Journal of integer sequences
%D 2011
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a7/
%G en
%F JIS_2011__14_2_a7
Shevelev, Vladimir. Binomial coefficient predictors. Journal of integer sequences, Tome 14 (2011) no. 2. http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a7/