On the complexity of testing elite primes
Journal of integer sequences, Tome 14 (2011) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Aigner has defined elite primes as primes $p$ such that all but finitely many of Fermat numbers $F(n) = 2^{2^{n}} + 1, n = 0,1,2,\dots $, are quadratic nonresidues modulo $p$. Since the sequence of Fermat numbers is eventually periodic modulo any $p$ with at most $p$ distinct elements in the image, both the period length $t_{p}$ and the number of arithmetic operations modulo $p$ to test $p$ for being elite are also bounded by $p$. We show that $t_{p} = O(p^{3/4})$, in particular improving the estimate $t_{p} \le (p+1)/4$ of Müller and Reinhart in 2008. The same bound $O(p^{3/4})$ also holds for testing anti-elite primes.
Classification : 11A07, 11L40
Keywords: elite prime testing, character sum
@article{JIS_2011__14_1_a5,
     author = {K\v{r}{\'\i}\v{z}ek, Michal and Luca, Florian and Shparlinski, Igor E. and Somer, Lawrence},
     title = {On the complexity of testing elite primes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a5/}
}
TY  - JOUR
AU  - Křížek, Michal
AU  - Luca, Florian
AU  - Shparlinski, Igor E.
AU  - Somer, Lawrence
TI  - On the complexity of testing elite primes
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a5/
LA  - en
ID  - JIS_2011__14_1_a5
ER  - 
%0 Journal Article
%A Křížek, Michal
%A Luca, Florian
%A Shparlinski, Igor E.
%A Somer, Lawrence
%T On the complexity of testing elite primes
%J Journal of integer sequences
%D 2011
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a5/
%G en
%F JIS_2011__14_1_a5
Křížek, Michal; Luca, Florian; Shparlinski, Igor E.; Somer, Lawrence. On the complexity of testing elite primes. Journal of integer sequences, Tome 14 (2011) no. 1. http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a5/