Unique difference bases of $\Bbb Z$
Journal of integer sequences, Tome 14 (2011) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For $ n\in \mathbb{Z}, A\subset \mathbb{Z}$, let $ \delta_{A}(n)$ denote the number of representations of $ n$ in the form $ n=a-a'$, where $ a,a'\in A$. A set $ A\subset \mathbb{Z}$ is called a unique difference basis of $ \mathbb{Z}$ if $ \delta_{A}(n)=1$ for all $ n\neq 0$ in $ \mathbb{Z}$. In this paper, we prove that there exists a unique difference basis of $ \mathbb{Z}$ whose growth is logarithmic. These results show that the analogue of the Erdos-Turán conjecture fails to hold in $ (\mathbb{Z},-)$.
Keywords: erdacute$\Acute $os-turán conjecture, difference bases, counting function
@article{JIS_2011__14_1_a4,
     author = {Tang, Chi-Wu and Tang, Min and Wu, Lei},
     title = {Unique difference bases of $\Bbb Z$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a4/}
}
TY  - JOUR
AU  - Tang, Chi-Wu
AU  - Tang, Min
AU  - Wu, Lei
TI  - Unique difference bases of $\Bbb Z$
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a4/
LA  - en
ID  - JIS_2011__14_1_a4
ER  - 
%0 Journal Article
%A Tang, Chi-Wu
%A Tang, Min
%A Wu, Lei
%T Unique difference bases of $\Bbb Z$
%J Journal of integer sequences
%D 2011
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a4/
%G en
%F JIS_2011__14_1_a4
Tang, Chi-Wu; Tang, Min; Wu, Lei. Unique difference bases of $\Bbb Z$. Journal of integer sequences, Tome 14 (2011) no. 1. http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a4/