On the Fermat periods of natural numbers
Journal of integer sequences, Tome 13 (2010) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $b > 1$ be a natural number and $n \in N_{0}$. Then the numbers $F_{b,n} := b^{2^{n}} + 1$ form the sequence of generalized Fermat numbers in base $b$. It is well-known that for any natural number $N$, the congruential sequence $(F_{b,n} (mod N))$ is ultimately periodic. We give criteria to determine the length of this Fermat period and show that for any natural number $L$ and any $b > 1$ the number of primes having a period length $L$ to base $b$ is infinite. From this we derive an approach to find large non-Proth elite and anti-elite primes, as well as a theorem linking the shape of the prime factors of a given composite number to the length of the latter number's Fermat period.
Classification : 11A41, 11A51, 11N69, 11Y05
Keywords: generalized Fermat number, elite prime number, anti-elite prime number, Fermat period
@article{JIS_2010__13_9_a4,
     author = {M\"uller, Tom},
     title = {On the {Fermat} periods of natural numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a4/}
}
TY  - JOUR
AU  - Müller, Tom
TI  - On the Fermat periods of natural numbers
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a4/
LA  - en
ID  - JIS_2010__13_9_a4
ER  - 
%0 Journal Article
%A Müller, Tom
%T On the Fermat periods of natural numbers
%J Journal of integer sequences
%D 2010
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a4/
%G en
%F JIS_2010__13_9_a4
Müller, Tom. On the Fermat periods of natural numbers. Journal of integer sequences, Tome 13 (2010) no. 9. http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a4/