Counting peaks and valleys in a partition of a set
Journal of integer sequences, Tome 13 (2010) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A $partition \pi $ of the set $[n] = {1,2,\dots ,n}$ is a collection ${B_{1}, B_{2}, \dots , B_{k}}$ of nonempty disjoint subsets of $[n] (called blocks)$ whose union equals $[n]$. In this paper, we find an explicit formula for the generating function for the number of partitions of $[n]$ with exactly $k$ blocks according to the number of peaks (valleys) in terms of Chebyshev polynomials of the second kind. Furthermore, we calculate explicit formulas for the total number of peaks and valleys in all the partitions of $[n]$ with exactly $k$ blocks, providing both algebraic and combinatorial proofs.
Classification : 05A18, 05A15, 42C05
Keywords: set partition, generating function, recurrence relation, peak, valley (Concerned with sequences )
@article{JIS_2010__13_6_a5,
     author = {Mansour, Toufik and Shattuck, Mark},
     title = {Counting peaks and valleys in a partition of a set},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a5/}
}
TY  - JOUR
AU  - Mansour, Toufik
AU  - Shattuck, Mark
TI  - Counting peaks and valleys in a partition of a set
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a5/
LA  - en
ID  - JIS_2010__13_6_a5
ER  - 
%0 Journal Article
%A Mansour, Toufik
%A Shattuck, Mark
%T Counting peaks and valleys in a partition of a set
%J Journal of integer sequences
%D 2010
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a5/
%G en
%F JIS_2010__13_6_a5
Mansour, Toufik; Shattuck, Mark. Counting peaks and valleys in a partition of a set. Journal of integer sequences, Tome 13 (2010) no. 6. http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a5/