Tilings, compositions, and generalizations
Journal of integer sequences, Tome 13 (2010) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For $n \ge 1$, let $a_{n}$ count the number of ways one can tile a $1 \times n$ chessboard using $1 \times 1$ square tiles, which come in $w$ colors, and $1 \times 2$ rectangular tiles, which come in $t$ colors. The results for $a_{n}$ generalize the Fibonacci numbers and provide generalizations of many of the properties satisfied by the Fibonacci and Lucas numbers. We count the total number of $1 \times 1$ square tiles and $1 \times 2$ rectangular tiles that occur among the $a_{n}$ tilings of the $1 \times n$ chessboard. Further, for these $a_{n}$ tilings, we also determine: (i) the number of levels, where two consecutive tiles are of the same size; (ii) the number of rises, where a $1 \times 1$ square tile is followed by a $1 \times 2$ rectangular tile; and, (iii) the number of descents, where a $1 \times 2$ rectangular tile is followed by a $1 \times 1$ square tile. Wrapping the $1 \times n$ chessboard around so that the $n$th square is followed by the first square, the numbers of $1 \times 1$ square tiles and $1 \times 2$ rectangular tiles, as well as the numbers of levels, rises, and descents, are then counted for these circular tilings.
Classification : 11B37, 11B39
Keywords: tilings, Fibonacci numbers, Lucas numbers, jacobsthal numbers, levels, rises, descents, circular tilings
@article{JIS_2010__13_6_a2,
     author = {Grimaldi, Ralph P.},
     title = {Tilings, compositions, and generalizations},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a2/}
}
TY  - JOUR
AU  - Grimaldi, Ralph P.
TI  - Tilings, compositions, and generalizations
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a2/
LA  - en
ID  - JIS_2010__13_6_a2
ER  - 
%0 Journal Article
%A Grimaldi, Ralph P.
%T Tilings, compositions, and generalizations
%J Journal of integer sequences
%D 2010
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a2/
%G en
%F JIS_2010__13_6_a2
Grimaldi, Ralph P. Tilings, compositions, and generalizations. Journal of integer sequences, Tome 13 (2010) no. 6. http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a2/