A generalization of the question of Sierpiński on geometric progressions
Journal of integer sequences, Tome 13 (2010) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove that there is no geometric progression that contains four distinct integers of the form $Dm^{2} + C, D,$m $\in $ N, $C = \pm 1 \pm 2, \pm $ 4.
Keywords: quadratic Diophantine equation, minimal positive solution, triangular numbers, geometric progression
@article{JIS_2010__13_3_a5,
     author = {Luo, Jiagui and Yuan, Pingzhi},
     title = {A generalization of the question of {Sierpi\'nski} on geometric progressions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_3_a5/}
}
TY  - JOUR
AU  - Luo, Jiagui
AU  - Yuan, Pingzhi
TI  - A generalization of the question of Sierpiński on geometric progressions
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_3_a5/
LA  - en
ID  - JIS_2010__13_3_a5
ER  - 
%0 Journal Article
%A Luo, Jiagui
%A Yuan, Pingzhi
%T A generalization of the question of Sierpiński on geometric progressions
%J Journal of integer sequences
%D 2010
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_3_a5/
%G en
%F JIS_2010__13_3_a5
Luo, Jiagui; Yuan, Pingzhi. A generalization of the question of Sierpiński on geometric progressions. Journal of integer sequences, Tome 13 (2010) no. 3. http://geodesic.mathdoc.fr/item/JIS_2010__13_3_a5/