The terms in Lucas sequences divisible by their indices
Journal of integer sequences, Tome 13 (2010) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For Lucas sequences of the first kind $ (u_n)_{n\ge 0}$ and second kind $ (v_n)_{n\ge 0}$ defined as usual by $ u_n=(\alpha ^n-\beta ^n)/(\alpha -\beta ), v_n=\alpha ^n+\beta ^n$, where $ \alpha $ and $ \beta $ are either integers or conjugate quadratic integers, we describe the sets $ \{n\in\mathbb{N}:n$ divides $ u_n\}$ and $ \{n\in\mathbb{N}:n$ divides $ v_n\}$. Building on earlier work, particularly that of Somer, we show that the numbers in these sets can be written as a product of a so-called $basic$ number, which can only be $ 1, 6$ or $ 12$, and particular primes, which are described explicitly. Some properties of the set of all primes that arise in this way is also given, for each kind of sequence.
Classification : 11B39
Keywords: Lucas sequences, indices
@article{JIS_2010__13_2_a6,
     author = {Smyth, Chris},
     title = {The terms in {Lucas} sequences divisible by their indices},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_2_a6/}
}
TY  - JOUR
AU  - Smyth, Chris
TI  - The terms in Lucas sequences divisible by their indices
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_2_a6/
LA  - en
ID  - JIS_2010__13_2_a6
ER  - 
%0 Journal Article
%A Smyth, Chris
%T The terms in Lucas sequences divisible by their indices
%J Journal of integer sequences
%D 2010
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_2_a6/
%G en
%F JIS_2010__13_2_a6
Smyth, Chris. The terms in Lucas sequences divisible by their indices. Journal of integer sequences, Tome 13 (2010) no. 2. http://geodesic.mathdoc.fr/item/JIS_2010__13_2_a6/