On a compositeness test for $(2^p+1)/3$
Journal of integer sequences, Tome 13 (2010) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this note, we give a necessary condition for the primality of $(2^{p}+1)/3$.
Classification : 11Y11, 11A41, 11A51
Keywords: primality, wagstaff primes
@article{JIS_2010__13_1_a6,
     author = {Berrizbeitia, Pedro and Luca, Florian and Melham, Ray},
     title = {On a compositeness test for $(2^p+1)/3$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a6/}
}
TY  - JOUR
AU  - Berrizbeitia, Pedro
AU  - Luca, Florian
AU  - Melham, Ray
TI  - On a compositeness test for $(2^p+1)/3$
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a6/
LA  - en
ID  - JIS_2010__13_1_a6
ER  - 
%0 Journal Article
%A Berrizbeitia, Pedro
%A Luca, Florian
%A Melham, Ray
%T On a compositeness test for $(2^p+1)/3$
%J Journal of integer sequences
%D 2010
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a6/
%G en
%F JIS_2010__13_1_a6
Berrizbeitia, Pedro; Luca, Florian; Melham, Ray. On a compositeness test for $(2^p+1)/3$. Journal of integer sequences, Tome 13 (2010) no. 1. http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a6/