Functorial orbit counting
Journal of integer sequences, Tome 12 (2009) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the functorial and growth properties of closed orbits for maps. By viewing an arbitrary sequence as the orbit-counting function for a map, iterates and Cartesian products of maps define new transformations between integer sequences. An orbit monoid is associated to any integer sequence, giving a dynamical interpretation of the Euler transform.
Classification : 11B83
@article{JIS_2009__12_2_a4,
     author = {Pakapongpun, Apisit and Ward, Thomas B.},
     title = {Functorial orbit counting},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a4/}
}
TY  - JOUR
AU  - Pakapongpun, Apisit
AU  - Ward, Thomas B.
TI  - Functorial orbit counting
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a4/
LA  - en
ID  - JIS_2009__12_2_a4
ER  - 
%0 Journal Article
%A Pakapongpun, Apisit
%A Ward, Thomas B.
%T Functorial orbit counting
%J Journal of integer sequences
%D 2009
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a4/
%G en
%F JIS_2009__12_2_a4
Pakapongpun, Apisit; Ward, Thomas B. Functorial orbit counting. Journal of integer sequences, Tome 12 (2009) no. 2. http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a4/