Some postage stamp 2-bases
Journal of integer sequences, Tome 12 (2009) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A set of $k$ integers is a 2-basis if every positive integer up to $n$ can be expressed as the sum of no more than 2 values from the set; an extremal 2-basis is one for which $n$ is as large as possible. A new algorithm extends the lower bound of Mossige for symmetric bases. An assumed modulo structure is combined with local search. These 2-bases match all known extremal values for $k$ from 11 to 20. Bases out to $k = 82$ are given.
Classification : 11B13
Keywords: h-basis, extremal h-basis
@article{JIS_2009__12_1_a4,
     author = {Robinson, John P.},
     title = {Some postage stamp 2-bases},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_1_a4/}
}
TY  - JOUR
AU  - Robinson, John P.
TI  - Some postage stamp 2-bases
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_1_a4/
LA  - en
ID  - JIS_2009__12_1_a4
ER  - 
%0 Journal Article
%A Robinson, John P.
%T Some postage stamp 2-bases
%J Journal of integer sequences
%D 2009
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_1_a4/
%G en
%F JIS_2009__12_1_a4
Robinson, John P. Some postage stamp 2-bases. Journal of integer sequences, Tome 12 (2009) no. 1. http://geodesic.mathdoc.fr/item/JIS_2009__12_1_a4/