Integer sequences avoiding prime pairwise sums
Journal of integer sequences, Tome 11 (2008) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The following result is proved: If $A\subseteq \{ 1,\, 2,\, \ldots ,\, n\} $ is the subset of largest cardinality such that the sum of no two (distinct) elements of $A$ is prime, then $\vert A\vert=\lfloor(n+1)/2\rfloor$ and all the elements of $A$ have the same parity. The following open question is posed: what is the largest cardinality of $A\subseteq \{ 1,\, 2,\, \ldots ,\, n\} $ such that the sum of no two (distinct) elements of $A$ is prime and $A$ contains elements of both parities?
Keywords: primes, sumsets, distribution of primes
@article{JIS_2008__11_5_a1,
     author = {Chen, Yong-Gao},
     title = {Integer sequences avoiding prime pairwise sums},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a1/}
}
TY  - JOUR
AU  - Chen, Yong-Gao
TI  - Integer sequences avoiding prime pairwise sums
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a1/
LA  - en
ID  - JIS_2008__11_5_a1
ER  - 
%0 Journal Article
%A Chen, Yong-Gao
%T Integer sequences avoiding prime pairwise sums
%J Journal of integer sequences
%D 2008
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a1/
%G en
%F JIS_2008__11_5_a1
Chen, Yong-Gao. Integer sequences avoiding prime pairwise sums. Journal of integer sequences, Tome 11 (2008) no. 5. http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a1/