A natural extension of Catalan numbers
Journal of integer sequences, Tome 11 (2008) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Dyck path is a lattice path in the plane integer lattice Z $\times $ Z consisting of steps (1,1) and (1,-1), each connecting diagonal lattice points, which never passes below the $x$-axis. The number of all Dyck paths that start at (0,0) and finish at ($2n,0$) is also known as the $n$th Catalan number. In this paper we find a closed formula, depending on a non-negative integer $t$ and on two lattice points $p_{1}$ and $p_{2}$, for the number of Dyck paths starting at $p_{1}$, ending at $p_{2}$, and touching the $x$-axis exactly $t$ times. Moreover, we provide explicit expressions for the corresponding generating function and bivariate generating function.
Classification : 05A15, 11B83, 11Y55
Keywords: Catalan numbers, Dyck paths
@article{JIS_2008__11_3_a7,
     author = {Solomon, Noam and Solomon, Shay},
     title = {A natural extension of {Catalan} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a7/}
}
TY  - JOUR
AU  - Solomon, Noam
AU  - Solomon, Shay
TI  - A natural extension of Catalan numbers
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a7/
LA  - en
ID  - JIS_2008__11_3_a7
ER  - 
%0 Journal Article
%A Solomon, Noam
%A Solomon, Shay
%T A natural extension of Catalan numbers
%J Journal of integer sequences
%D 2008
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a7/
%G en
%F JIS_2008__11_3_a7
Solomon, Noam; Solomon, Shay. A natural extension of Catalan numbers. Journal of integer sequences, Tome 11 (2008) no. 3. http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a7/