New upper bounds for taxicab and cabtaxi numbers
Journal of integer sequences, Tome 11 (2008) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Hardy was surprised by Ramanujan's remark about a London taxi numbered 1729: "it is a very interesting number, it is the smallest number expressible as a sum of two cubes in two different ways". In memory of this story, this number is now called $Taxicab(2) = 1729 = 9^{3} + 10^{3} = 1^{3} + 12^{3}, Taxicab(n)$ being the smallest number expressible in $n$ ways as a sum of two cubes. We can generalize the problem by also allowing differences of cubes: $Cabtaxi(n)$ is the smallest number expressible in $n$ ways as a sum or difference of two cubes. For example, $Cabtaxi(2) = 91 = 3^{3} + 4^{3} = 6^{3} - 5^{3}$. Results were only known up to $Taxicab(6)$ and $Cabtaxi(9)$. This paper presents a history of the two problems since Fermat, Frenicle and Viète, and gives new upper bounds for $Taxicab(7)$ to $Taxicab(19)$, and for $Cabtaxi(10)$ to $Cabtaxi(30)$. Decompositions are explicitly given up to $Taxicab(12)$ and $Cabtaxi(20)$.
Classification : 11D25
Keywords: taxicab number, cabtaxi number, Hardy-Ramanujan number, bernard frenicle de bessy, fran$$###$$cois vi`ete, sum of two cubes, difference of two cubes, magic square of cubes
@article{JIS_2008__11_1_a6,
     author = {Boyer, Christian},
     title = {New upper bounds for taxicab and cabtaxi numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a6/}
}
TY  - JOUR
AU  - Boyer, Christian
TI  - New upper bounds for taxicab and cabtaxi numbers
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a6/
LA  - en
ID  - JIS_2008__11_1_a6
ER  - 
%0 Journal Article
%A Boyer, Christian
%T New upper bounds for taxicab and cabtaxi numbers
%J Journal of integer sequences
%D 2008
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a6/
%G en
%F JIS_2008__11_1_a6
Boyer, Christian. New upper bounds for taxicab and cabtaxi numbers. Journal of integer sequences, Tome 11 (2008) no. 1. http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a6/