On anti-elite prime numbers
Journal of integer sequences, Tome 10 (2007) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An odd prime number $p$ is called anti-elite if only finitely many Fermat numbers are quadratic non-residues to $p$. This concept is the exact opposite to that of elite prime numbers. We study some fundamental properties of anti-elites and show that there are infinitely many of them. A computational search among all the numbers up to 100 billion yielded 84 anti-elite primes.
Classification : 11A15, 11A41
Keywords: anti-elite primes, elite primes, Fermat numbers
@article{JIS_2007__10_9_a2,
     author = {M\"uller, Tom},
     title = {On anti-elite prime numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a2/}
}
TY  - JOUR
AU  - Müller, Tom
TI  - On anti-elite prime numbers
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a2/
LA  - en
ID  - JIS_2007__10_9_a2
ER  - 
%0 Journal Article
%A Müller, Tom
%T On anti-elite prime numbers
%J Journal of integer sequences
%D 2007
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a2/
%G en
%F JIS_2007__10_9_a2
Müller, Tom. On anti-elite prime numbers. Journal of integer sequences, Tome 10 (2007) no. 9. http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a2/