Interspersions and fractal sequences associated with fractions $c^j/d^k$
Journal of integer sequences, Tome 10 (2007) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose $c\geq 2$ and $d\geq 2$ are integers, and let $S$ be the set of integers $\left\lfloor c^j/d^k\right\rfloor$, where $j$ and $k$ range over the nonnegative integers. Assume that $c$ and $d$ are multiplicatively independent; that is, if $p$ and $q$ are integers for which $c^p=d^q,$ then $p=q=0$. The numbers in $S$ form interspersions in various ways. Related fractal sequences and permutations of the set of nonnegative integers are also discussed.
Classification : 11B99
Keywords: interspersion, fractal sequence
@article{JIS_2007__10_5_a5,
     author = {Kimberling, Clark},
     title = {Interspersions and fractal sequences associated with fractions $c^j/d^k$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a5/}
}
TY  - JOUR
AU  - Kimberling, Clark
TI  - Interspersions and fractal sequences associated with fractions $c^j/d^k$
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a5/
LA  - en
ID  - JIS_2007__10_5_a5
ER  - 
%0 Journal Article
%A Kimberling, Clark
%T Interspersions and fractal sequences associated with fractions $c^j/d^k$
%J Journal of integer sequences
%D 2007
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a5/
%G en
%F JIS_2007__10_5_a5
Kimberling, Clark. Interspersions and fractal sequences associated with fractions $c^j/d^k$. Journal of integer sequences, Tome 10 (2007) no. 5. http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a5/