A note on the postage stamp problem
Journal of integer sequences, Tome 9 (2006) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $h,k$ be fixed positive integers, and let $A$ be any set of positive integers. Let $hA:=\{a_1+a_2+\cdots+a_r:a_i \in A, r \le h\}$ denote the set of all integers representable as a sum of no more than $h$ elements of $A$, and let $n(h,A)$ denote the largest integer $n$ such that $\{1,2,\ldots,n\} \subseteq hA$. Let $n(h,k)=\max_A\:n(h,A)$, where the maximum is taken over all sets $A$ with $k$ elements. The purpose of this note is to determine $n(h,A)$ when the elements of $A$ are in arithmetic progression. In particular, we determine the value of $n(h,2)$.
Classification : 11B13
Keywords: h-basis, extremal h-basis, arithmetic progression
@article{JIS_2006__9_1_a5,
     author = {Tripathi, Amitabha},
     title = {A note on the postage stamp problem},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a5/}
}
TY  - JOUR
AU  - Tripathi, Amitabha
TI  - A note on the postage stamp problem
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a5/
LA  - en
ID  - JIS_2006__9_1_a5
ER  - 
%0 Journal Article
%A Tripathi, Amitabha
%T A note on the postage stamp problem
%J Journal of integer sequences
%D 2006
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a5/
%G en
%F JIS_2006__9_1_a5
Tripathi, Amitabha. A note on the postage stamp problem. Journal of integer sequences, Tome 9 (2006) no. 1. http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a5/