Kaprekar triples
Journal of integer sequences, Tome 8 (2005) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We say that 45 is a Kaprekar triple because $45^{3} =91125$ and 9+11+25=45. We find a necessary condition for the existence of Kaprekar triples which makes it quite easy to search for them. We also investigate some Kaprekar triples of special forms.
Classification : 11A63, 11Y55
Keywords: kaprekar triples, division algorithm, chinese remainder theorem, components, perfect numbers
@article{JIS_2005__8_4_a4,
     author = {Iannucci, Douglas E. and Foster, Bertrum},
     title = {Kaprekar triples},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a4/}
}
TY  - JOUR
AU  - Iannucci, Douglas E.
AU  - Foster, Bertrum
TI  - Kaprekar triples
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a4/
LA  - en
ID  - JIS_2005__8_4_a4
ER  - 
%0 Journal Article
%A Iannucci, Douglas E.
%A Foster, Bertrum
%T Kaprekar triples
%J Journal of integer sequences
%D 2005
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a4/
%G en
%F JIS_2005__8_4_a4
Iannucci, Douglas E.; Foster, Bertrum. Kaprekar triples. Journal of integer sequences, Tome 8 (2005) no. 4. http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a4/