On perfect totient numbers
Journal of integer sequences, Tome 6 (2003) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $n>2$ be a positive integer and let $\phi$ denote Euler's totient function. Define $\phi^1(n)=\phi(n)$ and $\phi^k(n)=\phi(\phi^{k-1}(n))$ for all integers $k\ge2$. Define the arithmetic function $S$ by $S(n)=\phi(n)+\phi^2(n)+\cdots+\phi^c(n)+1$, where $\phi^c(n)=2$. We say $n$ is a perfect totient number if $S(n)=n$. We give a list of known perfect totient numbers, and we give sufficient conditions for the existence of further perfect totient numbers.
Keywords: totient, perfect totient number, class number, Diophantine equation
@article{JIS_2003__6_4_a0,
     author = {Iannucci, Douglas E. and Deng, Moujie and Cohen, Graeme L.},
     title = {On perfect totient numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a0/}
}
TY  - JOUR
AU  - Iannucci, Douglas E.
AU  - Deng, Moujie
AU  - Cohen, Graeme L.
TI  - On perfect totient numbers
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a0/
LA  - en
ID  - JIS_2003__6_4_a0
ER  - 
%0 Journal Article
%A Iannucci, Douglas E.
%A Deng, Moujie
%A Cohen, Graeme L.
%T On perfect totient numbers
%J Journal of integer sequences
%D 2003
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a0/
%G en
%F JIS_2003__6_4_a0
Iannucci, Douglas E.; Deng, Moujie; Cohen, Graeme L. On perfect totient numbers. Journal of integer sequences, Tome 6 (2003) no. 4. http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a0/