Numerical analogues of Aronson's sequence
Journal of integer sequences, Tome 6 (2003) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Aronson's sequence 1, 4, 11, 16,$ \dots $is defined by the English sentence "t is the first, fourth, eleventh, sixteenth,$ \dots $letter of this sentence." This paper introduces some numerical analogues, such as: $a(n)$ is taken to be the smallest positive integer greater than $a(n-1)$ which is consistent with the condition "$n$ is a member of the sequence if and only if $a(n)$ is odd." This sequence can also be characterized by its "square", the sequence $a^(2)$ (n) = $a(a(n))$, which equals $2n+3$ for $n >= 1$. There are many generalizations of this sequence, some of which are new, while others throw new light on previously known sequences.
Classification : 11B37
Keywords: self-describing sequence, aronson sequence, square of sequence (Concerned with sequences A079313
@article{JIS_2003__6_2_a6,
     author = {Cloitre, Benoit and Sloane, N. J. A. and Vandermast, Matthew J.},
     title = {Numerical analogues of {Aronson's} sequence},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a6/}
}
TY  - JOUR
AU  - Cloitre, Benoit
AU  - Sloane, N. J. A.
AU  - Vandermast, Matthew J.
TI  - Numerical analogues of Aronson's sequence
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a6/
LA  - en
ID  - JIS_2003__6_2_a6
ER  - 
%0 Journal Article
%A Cloitre, Benoit
%A Sloane, N. J. A.
%A Vandermast, Matthew J.
%T Numerical analogues of Aronson's sequence
%J Journal of integer sequences
%D 2003
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a6/
%G en
%F JIS_2003__6_2_a6
Cloitre, Benoit; Sloane, N. J. A.; Vandermast, Matthew J. Numerical analogues of Aronson's sequence. Journal of integer sequences, Tome 6 (2003) no. 2. http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a6/