Further results on derived sequences
Journal of integer sequences, Tome 6 (2003) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In 2003 Cohen and Iannucci introduced a multiplicative arithmetic function $D$ by assigning $D(p^a) = a$ p^a-1 when $p$ is a prime and $a$ is a positive integer. They defined D^$0(n) = n$ and $D^k(n) = $D(D^k-1$(n))$ and they called $(D^k(n))$, k >= 0 the derived sequence of $n$. This paper answers some open questions about the function $D$ and its iterates. We show how to construct derived sequences of arbitrary cycle size, and we give examples for cycles of lengths up to 10. Given $n$, we give a method for computing $m$ such that $D(m)=n$, up to a square free unitary factor.
Classification : 11Y55, 11A25, 11B83
Keywords: arithmetic functions, multiplicative functions, cycles
@article{JIS_2003__6_2_a1,
     author = {Hare, Kevin G. and Yazdani, Soroosh},
     title = {Further results on derived sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a1/}
}
TY  - JOUR
AU  - Hare, Kevin G.
AU  - Yazdani, Soroosh
TI  - Further results on derived sequences
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a1/
LA  - en
ID  - JIS_2003__6_2_a1
ER  - 
%0 Journal Article
%A Hare, Kevin G.
%A Yazdani, Soroosh
%T Further results on derived sequences
%J Journal of integer sequences
%D 2003
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a1/
%G en
%F JIS_2003__6_2_a1
Hare, Kevin G.; Yazdani, Soroosh. Further results on derived sequences. Journal of integer sequences, Tome 6 (2003) no. 2. http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a1/