A sequence of binomial coefficients related to Lucas and Fibonacci numbers
Journal of integer sequences, Tome 6 (2003) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $L(n,k) = n / (n-k) C(n-k, k)$. We prove that all the zeros of the polynomial $L_n(x)= sum L(n,k)$x^k are real. The sequence $L(n,k)$ is thus strictly log-concave, and hence unimodal with at most two consecutive maxima. We determine those integers where the maximum is reached. In the last section we prove that $L(n,k)$ satisfies a central limit theorem as well as a local limit theorem.
Classification : 11B39, 11B65
Keywords: Fibonacci number, log-concave sequence, limit theorems, Lucas number, polynomial with real zeros, unimodal sequence
@article{JIS_2003__6_2_a0,
     author = {Benoumhani, Moussa},
     title = {A sequence of binomial coefficients related to {Lucas} and {Fibonacci} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a0/}
}
TY  - JOUR
AU  - Benoumhani, Moussa
TI  - A sequence of binomial coefficients related to Lucas and Fibonacci numbers
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a0/
LA  - en
ID  - JIS_2003__6_2_a0
ER  - 
%0 Journal Article
%A Benoumhani, Moussa
%T A sequence of binomial coefficients related to Lucas and Fibonacci numbers
%J Journal of integer sequences
%D 2003
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a0/
%G en
%F JIS_2003__6_2_a0
Benoumhani, Moussa. A sequence of binomial coefficients related to Lucas and Fibonacci numbers. Journal of integer sequences, Tome 6 (2003) no. 2. http://geodesic.mathdoc.fr/item/JIS_2003__6_2_a0/