Carmichael numbers of the form $(6m+1)(12m+1)(18m+1)$
Journal of integer sequences, Tome 5 (2002) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Numbers of the form $(6m+1)(12m+1)(18m+1)$ where all three factors are simultaneously prime are the best known examples of Carmichael numbers. In this paper we tabulate the counts of such numbers up to $10^n$ for each $n\le 42$. We also derive a function for estimating these counts that is remarkably accurate.
Classification : 11A99
Keywords: Carmichael numbers (Concerned with sequence
@article{JIS_2002__5_2_a5,
     author = {Dubner, Harvey},
     title = {Carmichael numbers of the form $(6m+1)(12m+1)(18m+1)$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a5/}
}
TY  - JOUR
AU  - Dubner, Harvey
TI  - Carmichael numbers of the form $(6m+1)(12m+1)(18m+1)$
JO  - Journal of integer sequences
PY  - 2002
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a5/
LA  - en
ID  - JIS_2002__5_2_a5
ER  - 
%0 Journal Article
%A Dubner, Harvey
%T Carmichael numbers of the form $(6m+1)(12m+1)(18m+1)$
%J Journal of integer sequences
%D 2002
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a5/
%G en
%F JIS_2002__5_2_a5
Dubner, Harvey. Carmichael numbers of the form $(6m+1)(12m+1)(18m+1)$. Journal of integer sequences, Tome 5 (2002) no. 2. http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a5/