On an integer sequence related to a product of trigonometric functions, and its combinatorial relevance
Journal of integer sequences, Tome 5 (2002) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper it is shown that for $n$ == 0 or 3 (mod 4), the middle term $S(n)$ in the expansion of the polynomial $(1+x)(1+x$^2)$\dots (1+x^n)$ occurs naturally when one analyzes when a discontinuous product of trigonometric functions is a derivative of a function. This number also represents the number of partitions of $T\_n/2 = n(n+1)/4, (where $
Classification : 05A15, 05A16, 05A17, 05A18, 06A07, 11B75
Keywords: unimodal polynomial, triangular number, derivative, partition, sperner's theorem, generating function (Concerned with sequence
@article{JIS_2002__5_2_a4,
     author = {Andrica, Dorin and Tomescu, Ioan},
     title = {On an integer sequence related to a product of trigonometric functions, and its combinatorial relevance},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a4/}
}
TY  - JOUR
AU  - Andrica, Dorin
AU  - Tomescu, Ioan
TI  - On an integer sequence related to a product of trigonometric functions, and its combinatorial relevance
JO  - Journal of integer sequences
PY  - 2002
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a4/
LA  - en
ID  - JIS_2002__5_2_a4
ER  - 
%0 Journal Article
%A Andrica, Dorin
%A Tomescu, Ioan
%T On an integer sequence related to a product of trigonometric functions, and its combinatorial relevance
%J Journal of integer sequences
%D 2002
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a4/
%G en
%F JIS_2002__5_2_a4
Andrica, Dorin; Tomescu, Ioan. On an integer sequence related to a product of trigonometric functions, and its combinatorial relevance. Journal of integer sequences, Tome 5 (2002) no. 2. http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a4/