Counting peaks at height $k$ in a Dyck path
Journal of integer sequences, Tome 5 (2002) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Dyck path is a lattice path in the plane integer lattice Z x Z consisting of steps (1,1) and (1,-1), which never passes below the $x$-axis. A peak at height $k$ on a Dyck path is a point on the path with coordinate $y=k$ that is immediately preceded by a (1,1) step and immediately followed by a (1,-1) step. In this paper we find an explicit expression for the generating function for the number of Dyck paths starting at (0,0) and ending at ($2n,0$) with exactly $r$ peaks at height $k$. This allows us to express this function via Chebyshev polynomials of the second kind and the generating function for the Catalan numbers.
Keywords: Dyck paths, Catalan numbers, Chebyshev polynomials
@article{JIS_2002__5_1_a3,
     author = {Mansour, Toufik},
     title = {Counting peaks at height $k$ in a {Dyck} path},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a3/}
}
TY  - JOUR
AU  - Mansour, Toufik
TI  - Counting peaks at height $k$ in a Dyck path
JO  - Journal of integer sequences
PY  - 2002
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a3/
LA  - en
ID  - JIS_2002__5_1_a3
ER  - 
%0 Journal Article
%A Mansour, Toufik
%T Counting peaks at height $k$ in a Dyck path
%J Journal of integer sequences
%D 2002
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a3/
%G en
%F JIS_2002__5_1_a3
Mansour, Toufik. Counting peaks at height $k$ in a Dyck path. Journal of integer sequences, Tome 5 (2002) no. 1. http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a3/