The gcd-sum function
Journal of integer sequences, Tome 4 (2001) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The gcd-sum is an arithmetic function defined as the sum of the gcd's of the first n integers with n: $g(n) = sum_{i=1..n}$ (i, n). The function arises in deriving asymptotic estimates for a lattice point counting problem. The function is multiplicative, and has polynomial growth. Its Dirichlet series has a compact representation in terms of the Riemann zeta function. Asymptotic forms for values of partial sums of the Dirichlet series at real values are derived, including estimates for error terms.
@article{JIS_2001__4_2_a1,
     author = {Broughan, Kevin A.},
     title = {The gcd-sum function},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a1/}
}
TY  - JOUR
AU  - Broughan, Kevin A.
TI  - The gcd-sum function
JO  - Journal of integer sequences
PY  - 2001
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a1/
LA  - en
ID  - JIS_2001__4_2_a1
ER  - 
%0 Journal Article
%A Broughan, Kevin A.
%T The gcd-sum function
%J Journal of integer sequences
%D 2001
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a1/
%G en
%F JIS_2001__4_2_a1
Broughan, Kevin A. The gcd-sum function. Journal of integer sequences, Tome 4 (2001) no. 2. http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a1/