A Note on Some Generalizations of Monge's Theorem
Journal for geometry and graphics, Tome 25 (2021) no. 2, pp. 227-23.

Voir la notice de l'article provenant de la source Heldermann Verlag

We generalize Monge's theorem for n+1 pairwise homothetic sets (in particular convex bodies) in En in place of three disks in E2. We also present a version for homotheties for pairs of vertices of a non degenerate simplex in En. It includes a reverse of Monge's theorem. Moreover, we give an analogon of Monge's theorem for the n-dimensional sphere and hyperboloid model of the hyperbolic space.
Classification : 52A20, 52A21, 52A55
Mots-clés : Monge's theorem, Menelaus' theorem, Euclidean space, sphere, hyperbolic space
@article{JGG_2021_25_2_JGG_2021_25_2_a5,
     author = {M. Lassak },
     title = {A {Note} on {Some} {Generalizations} of {Monge's} {Theorem}},
     journal = {Journal for geometry and graphics},
     pages = {227--23},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2021},
     url = {http://geodesic.mathdoc.fr/item/JGG_2021_25_2_JGG_2021_25_2_a5/}
}
TY  - JOUR
AU  - M. Lassak 
TI  - A Note on Some Generalizations of Monge's Theorem
JO  - Journal for geometry and graphics
PY  - 2021
SP  - 227
EP  - 23
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2021_25_2_JGG_2021_25_2_a5/
ID  - JGG_2021_25_2_JGG_2021_25_2_a5
ER  - 
%0 Journal Article
%A M. Lassak 
%T A Note on Some Generalizations of Monge's Theorem
%J Journal for geometry and graphics
%D 2021
%P 227-23
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2021_25_2_JGG_2021_25_2_a5/
%F JGG_2021_25_2_JGG_2021_25_2_a5
M. Lassak . A Note on Some Generalizations of Monge's Theorem. Journal for geometry and graphics, Tome 25 (2021) no. 2, pp. 227-23. http://geodesic.mathdoc.fr/item/JGG_2021_25_2_JGG_2021_25_2_a5/