Entangled: From Triangles to Polygons
Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 49-64
Cet article a éte moissonné depuis la source Heldermann Verlag
The aim of the present work is to study the configuration of two n-sided polygons with cevians where the sides and cevians of the first polygon enclose a constant angle with respective cevians and sides of the second polygon. We prove the existence of such pairs of n-gons, where sides are exchanged with cevians, and we call these polygons "entangled". Among the findings, there are generalizations of Miquel's theorem and Simson lines.
Classification :
51M04
Mots-clés : Orthologic triangles, entangled polygons, entanglement points, entanglement angle, Miquel point, Miquel circles, generalized Simson line
Mots-clés : Orthologic triangles, entangled polygons, entanglement points, entanglement angle, Miquel point, Miquel circles, generalized Simson line
@article{JGG_2020_24_1_JGG_2020_24_1_a4,
author = {K. Myrianthis },
title = {Entangled: {From} {Triangles} to {Polygons}},
journal = {Journal for geometry and graphics},
pages = {49--64},
year = {2020},
volume = {24},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a4/}
}
K. Myrianthis . Entangled: From Triangles to Polygons. Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a4/