Entangled: From Triangles to Polygons
Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of the present work is to study the configuration of two n-sided polygons with cevians where the sides and cevians of the first polygon enclose a constant angle with respective cevians and sides of the second polygon. We prove the existence of such pairs of n-gons, where sides are exchanged with cevians, and we call these polygons "entangled". Among the findings, there are generalizations of Miquel's theorem and Simson lines.
Classification : 51M04
Mots-clés : Orthologic triangles, entangled polygons, entanglement points, entanglement angle, Miquel point, Miquel circles, generalized Simson line
@article{JGG_2020_24_1_JGG_2020_24_1_a4,
     author = {K. Myrianthis },
     title = {Entangled: {From} {Triangles} to {Polygons}},
     journal = {Journal for geometry and graphics},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a4/}
}
TY  - JOUR
AU  - K. Myrianthis 
TI  - Entangled: From Triangles to Polygons
JO  - Journal for geometry and graphics
PY  - 2020
SP  - 49
EP  - 64
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a4/
ID  - JGG_2020_24_1_JGG_2020_24_1_a4
ER  - 
%0 Journal Article
%A K. Myrianthis 
%T Entangled: From Triangles to Polygons
%J Journal for geometry and graphics
%D 2020
%P 49-64
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a4/
%F JGG_2020_24_1_JGG_2020_24_1_a4
K. Myrianthis . Entangled: From Triangles to Polygons. Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a4/